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1 An Introduction to Video Game Emulation with Rust
Developing a video game emulator is becoming an increasingly popular hobby project for developers. It requires
knowledge of low-level hardware, modern programming languages, and graphics systems to successfully create one. It
is an excellent learning project; not only does it have clear goals, but it also very rewarding to successfully play games
on an emulator you’ve written yourself. I am still a relatively new emulation developer, but I wouldn’t have been able
to reach the place I am now if it weren’t for excellent guides and tutorials online. To that end, I wanted to give back
to the community by writing a guide with some of the tricks I picked up, in hopes it is useful for someone else.

1.1 Intro to Chip-8
Our target system is the Chip-8. The Chip-8 has become the “Hello World” for emulation development of a sort.
While you might be tempted to begin with something more exciting like the NES or Game Boy, these are a level of
complexity higher than the Chip-8. The Chip-8 has a 1-bit monochrome display, a simple 1-channel single tone audio,
and only 35 instructions (compared to ~500 for the Game Boy), but more on that later. This guide will cover the
technical specifics of the Chip-8, what hardware systems need to be emulated and how, and how to interact with the
user. This guide will focus on the original Chip-8 specification, and will not implement any of the many proposed
extensions that have been created, such as the Super Chip-8, Chip-16, or XO-Chip; these were created independently
of each other, and thus add contradictory features.

1.2 Chip-8 Technical Specifications
• A 64x32 monochrome display, drawn to via sprites that are always 8 pixels wide and between 1 and 16 pixels tall

• Sixteen 8-bit general purpose registers, referred to as V0 thru VF. VF also doubles as the flag register for
overflow operations

• 16-bit program counter

• Single 16-bit register used as a pointer for memory access, called the I Register

• An unstandardised amount of RAM, however most emulators allocate 4 KB

• 16-bit stack used for calling and returning from subroutines

• 16-key keyboard input

• Two special registers which decrease each frame and trigger upon reaching zero:

– Delay timer: Used for time-based game events
– Sound timer: Used to trigger the audio beep

1.3 Intro to Rust
Emulators can be written in nearly any programming language. This guide uses the Rust programming language,
although the steps outlined here could be applied to any language. Rust offers a number of great advantages; it
is a compiled language with targets for major platforms and it has an active community of external libraries to
utilize for our project. Rust also supports building for WebAssembly, allowing us to recompile our code to work in a
browser with a minimal amount of tweaking. This guide assumes you understand the basics of the Rust language and
programming as a whole. I will explain the code as we go along, but as Rust has a notoriously high learning curve, I
would recommend reading and referencing the excellent official Rust book on any concepts that are unfamiliar to you
as the guide progresses. This guide also assumes that you have Rust installed and working correctly. Please consult
the installation instructions for your platform if needed.

1.4 What you will need
Before you begin, please ensure you have access to or have installed the following items.

1.4.1 Text Editor

Any text editor can be used for the project, but there are two I recommend which offer features for Rust like syntax
highlighting, code suggestions, and debugger support.
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• Visual Studio Code is the editor I prefer for Rust, in combination with the rust-analyzer extension.

• While JetBrains does not offer a dedicated Rust IDE, there is a Rust extension for many of its other products.
The extension for CLion has additional functionality that the others do not, such as integrated debugger support.
Keep in mind that CLion is a paid product, although it offers a 30 day trial as well as extended free periods for
students.

If you do not care for any of these, Rust syntax and autocompletion plugins exist for many other editors, and it can
be debugged fairly easily with many other debuggers, such as gdb.

1.4.2 Test ROMs

An emulator isn’t much use if you have nothing to run! Included with the source code for this book are a number of
commonly distributed Chip-8 programs, which can also be found here. Some of these games will be shown as an
example throughout this guide.

1.4.3 Misc.

Other items that may be helpful as we progress:

• Please refresh yourself with hexadecimal notation if you do not feel comfortable with the concept. It will be
used extensively throughout this project.

• Chip-8 games are in a binary format, it is often helpful to be able to view the raw hex values as you debug.
Standard text editors typically don’t have support for viewing files in hexadecimal, instead a specialized hex
editor is required. Many offer similar features, but I personally prefer Reverse Engineer’s Hex Editor.

Let’s begin!
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2 Emulation Basics
This first chapter is an overview of the concepts of emulation development and the Chip-8. Subsequent chapters will
have code implementations in Rust, if you have no interest in Rust or prefer to work without examples, this chapter
will give an introduction to what steps a real system performs, what we need to emulate ourselves, and how all the
moving pieces fit together. If you’re completely new to this subject, this should provide the information you’ll need to
wrap your head around what you’re about to implement.

2.1 What’s in a Chip-8 Game?
Let’s begin with a simple question. If I give you a Chip-8 ROM1 file, what exactly is in it? It needs to contain all of
the game logic and graphical assets needed to make a game run on a screen, but how is it all laid out?

This is a basic, fundamental question; our goal is to read this file and make its program run. Well, there’s only one
way to find out, so let’s try and open a Chip-8 game in a text editor (such as Notepad, TextEdit, or any others you
prefer). For this example, I’m using the roms/PONG2 game included with this guide. Unless you’re using a very fancy
editor, you should probably see something similar to Figure 1.

Figure 1: Raw Chip-8 ROM file
1‘ROM’ stands for “Read-only memory”. It is a type of memory that is hard written at manufacturing time and cannot be modified by

the computer system. For the purposes of this guide “ROM file” will be used interchangeably with “game file”.

6



This doesn’t seem very helpful. In fact, it seems corrupted. Don’t worry, your game is (probably) just fine. All
computer programs are, at their core, just numbers saved into a file. These numbers can mean just about anything;
it’s only with context that a computer is able to put meaning to the values. Your text editor was designed to show
and edit text in a language such as English, and thus will automatically try and use a language-focused context such
as ASCII.

So we’ve learned that our Chip-8 file is not written in plain English, which we probably could have assumed already.
So what does it look like? Fortunately, programs exist to display the raw contents of a file, so we will need to use one
of those “hex editors” to display the actual contents of our file.

Figure 2: Chip-8 ROM file

In Figure 2, the numbers on the left of the vertical line are the offset values, how many bytes we are away from the
start of the file. On the right hand side are the actual values stored in the file. Both the offsets and data values are
displayed in hexadecimal (we’ll be dealing with hexadecimal quite a bit).

Okay, we have numbers now, so that’s an improvement. If those numbers don’t correspond to English letters, what
do they mean? These are the instructions for the Chip-8’s CPU. Actually, each instruction is two bytes, which is why
I’ve grouped them in pairs in the screenshot.

2.2 What is a CPU?
Let me take a moment to describe exactly what functionality a CPU provides, for those who aren’t familiar. A CPU,
for our purposes, does math. That’s it. Now, when I say it “does math”, this includes your usual items such as
addition, subtraction, and checking if two numbers are equal or not. There are also additional operations that are
needed for the game to run, such as jumping to different sections of code, or fetching and saving numbers. The game
file is entirely made up of mathematical operations for the CPU to preform.

All of the mathematical operations that the Chip-8 can perform have a corresponding number, called its opcode. A
full list of the Chip-8’s opcodes can be seen on this page. Whenever it is time for the emulator to perform another
instruction (also referred to as a tick or a cycle), it will grab the next opcode from the game ROM and do whatever
operation is specified by the opcode table; add, subtract, update what’s drawn on the screen, whatever.

What about parameters? It’s not enough to say “it’s time to add”, you need two numbers to actually add together,
plus a place to put the sum when you’re done. Other systems do this differently, but two bytes per operation is a lot
of possible numbers, way more than the 35 operations that Chip-8 can actually do. The extra digits are used to pack
in extra information into the opcode. The exact layout of this information varies between opcodes. The opcode table
uses N’s to indicate literal hexadecmial numbers. N for single digit, NN for two digits, and NNN for three digit literal
values, or for a register to be specified via X or Y.

2.3 What are Registers?
Which brings us to our next topic. What on earth is a register? A register is a specially designated place to store a
single byte for use in instructions. This may sound rather similar to RAM, and in some ways it is. While RAM is a
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large addressable place to store data, registers are usually few in number, they are all named, and they are directly
used when executing an opcode. For many computers, if you want to use a value in RAM, it has to be copied into a
register first.

The Chip-8 has sixteen registers that can be used freely by the programmer, named V0 through VF (0-15 in
hexadecimal). As an example of how registers can work, let’s look at one of the addition operations in our opcode
table. There is an operation for adding the values of two registers together, VX += VY, encoded as 8XY4. The 8XY4
is used for pattern matching the opcodes. If the current opcode begins with an 8 and ends with a 4, then this is the
matching operation. The middle two digits then specify which registers we are to use. Let’s say our opcode is 8124.
It begins with an 8 and ends with a 4, so we’re in the right place. For this instruction we will be using the values
stored in V1 and V2, as those match the other two digits. Let’s say V1 stores 5 and V2 stores 10, this operation
would add those two values and replace what was in V1, thus V1 now holds 15.

Chip-8 contains a few more registers, but they serve very specific purposes. One of the most significant ones is the
program counter (PC), which for Chip-8 can store a 16-bit value. I’ve made vague references to our “current opcode”,
but how do we keep track of where we are? Our emulator is simulating a computer running a program. It needs to
start at the beginning of our game and move from opcode to opcode, executing the instructions as it’s told. The PC
holds the index of what game instruction we’re currently working on. So it’ll start at the first byte of the game, then
move on to the third (remember all opcodes are two bytes), and so on and so forth. Some instructions can also tell
the PC to go somewhere else in the game, but by default it will simply move forward opcode by opcode.

2.4 What is RAM?
We have our sixteen V registers, but even for a simple system like a Chip-8, we really would like to be able to store
more than 16 numbers at a time. This is where random access memory (RAM) comes in. You’re probably familiar
with it in the context of your own computer, but RAM is a large array of numbers for the CPU to do with as it
pleases. Chip-8 is not a physical system, so there is no standard amount of RAM it is supposed to have. However,
emulation developers have more or less settled on 4096 bytes (4 KB), so our system will have the ability to store up
to 4096 8-bit numbers in its RAM, way more than most games will use.

Now, time for an important detail: The Chip-8 CPU has free access to read and write to RAM as it pleases. It does
not, however, have direct access to our game’s ROM. With a name like “Read-Only Memory”, it’s safe to assume that
we weren’t going to be able to overwrite it, but the CPU can’t read from ROM either? While the CPU needs to be
able to read the game ROM, it accomplishes this indirectly, by copying the entire game into RAM2 when the game
starts up. It is rather slow and inefficient to open our game file just to read a little bit of data over and over again.
Instead, we want to be able to copy as much data as we can into RAM for us to more quickly use. The other catch is
that somewhat confusingly, the ROM data is not loaded into very start of RAM. Instead, it’s offset by 512 bytes
(0x200). This means the first byte of the game is loaded at start into RAM address 0x200. The second ROM byte
into 0x201, etc.

Why doesn’t the Chip-8 simply store the game at the start of RAM and call it a day? Back when the Chip-8 was
designed, computers had much more limited amount of RAM, and only one program could run at a given time. The
first 0x200 bytes were allocated for the Chip-8 program itself to run in. Thus, modern Chip-8 emulators need to keep
that in mind, as games are still developed with that concept. Our system will actually use a little bit of that empty
space, but we will cover that later.

2Therefore, Chip-8 games have a maximum size of 4 KB, any larger and they can’t be completely loaded in.
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3 Setup
Since the eventual goal of this project is to have an emulator which can be built for both the desktop and a web
browser, we’re going to structure this project slightly unusually. Between the two builds, the actual emulation of the
Chip-8 system should be exactly the same, only things like reading in a file and displaying the screen will be different
between desktop and browser. To that end, we will create the backend, which I will call the core, as its own crate to
be used by both our future frontends.

Move into the folder where you will store your project and run the following command. Do not include the $, that is
simply to indicate that this is a terminal instruction.

$ cargo init chip8_core --lib

The --lib flag tells cargo to create a library rather than an executable module. This is where our emulation backend
will go. I called it chip8_core for the purposes of this project, but you are free to call it whatever you like.

As for the frontend, we’ll create an additional crate to hold that code:

$ cargo init desktop

Unlike our core, this creates an actual executable project. If you’ve done it correctly, your folder structure should now
look like this:

Figure 3: Initial file structure

All that remains is to tell our desktop frontend where to find chip8_core. Open up desktop/Cargo.toml and under
[dependencies] add the line:

chip8_core = { path = "../chip8_core" }

Since chip8_core is currently empty, this doesn’t actually add anything, but it’s something that will need to be done
eventually. Go ahead and try and compile and run the project, just to be sure everything is working. From inside the
desktop directory, run:

$ cargo run

If everything has been setup correctly, “Hello, world!” should print out. Great! Next, we’ll begin emulating the CPU
and start creating something a little more interesting.

3.1 Defining our Emulator
The most fundamental part of the system is the CPU, so we will begin there when creating our emulator. For the
time being, we will mostly be developing the chip8_core backend, then coming back to supply our frontend when it’s
well along. We will begin by working in the chip8_core/src/lib.rs file (you can delete the auto-generated test
code). Before we add any functionality, let’s refresh some of the concepts of what we’re about to do.

Emulation is simply executing a program originally written for a different system, so it functions very similarly to the
execution of a modern computer program. When running any old program, a line of code is read, understood by
the computer to perform some task such as modifying a variable, making a comparison, or jumping to a different
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line of code; that action is then taken, and the execution moves to the next line to repeat this process. If you’ve
studied compilers, you’ll know that when a system is running code, it’s not doing it line by line, but instead converts
the code into instructions understood by the processor, and then performs this loop upon those. This is exactly
how our emulator will function. We will traverse value by value in our game program, fetching the instruction
stored there, decoding the operation that must be done, and then executing it, before moving on to the next. This
fetch-decode-execute loop will form the core of our CPU emulation.

With this in mind, let’s begin by defining a class which will manage our emulator. In lib.rs, we’ll add a new empty
struct:

pub struct Emu {
}

This struct will be the main object for our emulation backend, and thus must handle running the actual game, and be
able to pass need information back and forth from the frontend (such as what’s on the screen and button presses).

3.2 Program Counter
But what to put in our Emu object? As discussed previously, the program needs to know where in the game it’s
currently executing. All CPUs accomplish this by simply keeping an index of the current instruction, stored into a
special register known as the Program Counter, or PC for short. This will be key for the fetch portion of our loop,
and will increment through the game as it runs, and can even be modified manually by some instructions (for things
such as jumping into a different section of code or calling a subroutine). Let’s add this to our struct:

pub struct Emu {
pc: u16,

}

3.3 RAM
While we could read from our game file every time we need a new instruction, this is very slow, inefficient, and simply
not how real systems do it. Instead, the Chip-8 is designed to copy the entire game program into its own RAM space,
where it can then read and written to as needed. It should be noted that many systems, such as the Game Boy, do
not allow the CPU to overwrite area of memory with the game stored in it (you wouldn’t want a bug to completely
corrupt game code). However, the Chip-8 has no such restriction. Since the Chip-8 was never a physical system, there
isn’t an official standard for how much memory it should have. However, it was originally designed to be implemented
on computers with 4096 bytes (4 KB) of RAM, so that’s how much we shall give it as well. Most programs won’t
come close to using it all, but it’s there if they need it. Let’s define that in our program.

const RAM_SIZE: usize = 4096;

pub struct Emu {
pc: u16,
ram: [u8; RAM_SIZE],

}

3.4 The display
Chip-8 uses a 64x32 monochrome display (1 bit per pixel). There’s nothing too special about this, however it is one of
the few things in our backend that will need to be accessible to our various frontends, and to the user. Unlike many
systems, Chip-8 does not automatically clear its screen to redraw every frame, instead the screen state is maintained,
and new sprites are drawn onto it (there is a clear screen command however). We can keep this screen data in an
array in our Emu object. Chip-8 is also more basic than most systems as we only have to deal with two colors - black
and white. Since this is a 1-bit display, we can simply store an array of booleans like so:

pub const SCREEN_WIDTH: usize = 64;
pub const SCREEN_HEIGHT: usize = 32;

const RAM_SIZE: usize = 4096;
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pub struct Emu {
pc: u16,
ram: [u8; RAM_SIZE],
screen: [bool; SCREEN_WIDTH * SCREEN_HEIGHT],

}

You’ll also notice that unlike our previous constant, we’ve defined the screen dimensions as public constants. This is
one of the few pieces of information that the frontend will need to actually draw the screen.

3.5 V Registers
While the system has quite a bit of RAM to work with, RAM access is usually considered fairly slow (but still orders
of magnitude faster than reading from disc). To speed things up, the Chip-8 defines sixteen 8-bit registers which
the game can use as it pleases for much faster operation. These are referred to as the V registers, and are usually
numbered in hex from V0 to VF (I’m honestly not sure what the V stands for), and we’ll group them together in one
array in our Emu struct.

pub const SCREEN_WIDTH: usize = 64;
pub const SCREEN_HEIGHT: usize = 32;

const RAM_SIZE: usize = 4096;
const NUM_REGS: usize = 16;

pub struct Emu {
pc: u16,
ram: [u8; RAM_SIZE],
screen: [bool; SCREEN_WIDTH * SCREEN_HEIGHT],
v_reg: [u8; NUM_REGS],

}

3.6 I Register
There is also another 16-bit register known as the I register, which is used for indexing into RAM for reads and writes.
We’ll get into the finer details of how this works later on, for now we simply need to have it.

pub const SCREEN_WIDTH: usize = 64;
pub const SCREEN_HEIGHT: usize = 32;

const RAM_SIZE: usize = 4096;
const NUM_REGS: usize = 16;

pub struct Emu {
pc: u16,
ram: [u8; RAM_SIZE],
screen: [bool; SCREEN_WIDTH * SCREEN_HEIGHT],
v_reg: [u8; NUM_REGS],
i_reg: u16,

}

3.7 The stack
The CPU also has a small stack, which is an array of 16-bit values that the CPU can read and write to. The stack
differs from regular RAM as the stack can only be read/written to via a “Last In, First Out (LIFO)” principle (like a
stack of pancakes!), when you go to grab (pop) a value, you remove the last one you added (pushed). Unlike many
systems, the stack is not general purpose. The only times the stack is allowed to be used is when you are entering or
exiting a subroutine, where the stack is used to know where you started so you can return after the routine ends.
Again, Chip-8 doesn’t officially state how many numbers the stack can hold, but 16 is a typical number for emulation
developers. There are a number of different ways we could implement our stack, perhaps the easiest way would be to
use the std::collections::VecDeque object from Rust’s standard library. This works fine for a Desktop-only build,
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however at the time of writing, many items in the std library don’t work for WebAssembly builds. Instead we will do
it the old fashioned way, with a statically sized array and an index so we know where the top of the stack is, known
as the Stack Pointer (SP).

pub const SCREEN_WIDTH: usize = 64;
pub const SCREEN_HEIGHT: usize = 32;

const RAM_SIZE: usize = 4096;
const NUM_REGS: usize = 16;
const STACK_SIZE: usize = 16;

pub struct Emu {
pc: u16,
ram: [u8; RAM_SIZE],
screen: [bool; SCREEN_WIDTH * SCREEN_HEIGHT],
v_reg: [u8; NUM_REGS],
i_reg: u16,
sp: u16,
stack: [u16; STACK_SIZE],

}

3.8 The timers
This has been a lot to process at once, but we’re now at the final items. Chip-8 also has two other special registers
that it uses as timers. The first, the Delay Timer is used by the system as a typical timer, counting down every cycle
and performing some action if it hits 0. The Sound Timer on the other hand, also counts down every clock cycle, but
upon hitting 0 emits a noise. Setting the Sound Timer to 0 is the only way to emit audio on the Chip-8, as we will
see later. These are both 8-bit registers, and must be supported for us to continue.

pub const SCREEN_WIDTH: usize = 64;
pub const SCREEN_HEIGHT: usize = 32;

const RAM_SIZE: usize = 4096;
const NUM_REGS: usize = 16;
const STACK_SIZE: usize = 16;
const NUM_KEYS: usize = 16;

pub struct Emu {
pc: u16,
ram: [u8; RAM_SIZE],
screen: [bool; SCREEN_WIDTH * SCREEN_HEIGHT],
v_reg: [u8; NUM_REGS],
i_reg: u16,
sp: u16,
stack: [u16; STACK_SIZE],
keys: [bool; NUM_KEYS],
dt: u8,
st: u8,

}

3.9 Initialization
That should do it for now, let’s go ahead and implement a new constructor for this class before we move onto the
next part. Following the struct definition, we’ll implement and set the default values:

// -- Unchanged code omitted --

const START_ADDR: u16 = 0x200;
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// -- Unchanged code omitted --

impl Emu {
pub fn new() -> Self {

Self {
pc: START_ADDR,
ram: [0; RAM_SIZE],
screen: [false; SCREEN_WIDTH * SCREEN_HEIGHT],
v_reg: [0; NUM_REGS],
i_reg: 0,
sp: 0,
stack: [0; STACK_SIZE],
keys: [false; NUM_KEYS],
dt: 0,
st: 0,

}
}

}

Everything seems pretty straightforward, we simply initialize all values and arrays to zero. . . except for our Program
Counter, which gets set to 0x200 (512 in decimal). I mentioned the reasoning behind this in the previous chapter, but
the emulator has to know where the beginning of the program is, and it is Chip-8 standard that the beginning of all
Chip-8 programs will be loaded in starting at RAM address 0x200. This number will come up again, so we’ve defined
it as a constant.

That wraps up this part! With the basis of our emulator underway, we can begin to implement the execution!
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4 Implementing Emulation Methods
We have now created our Emu struct and defined a number of variables for it to manage, as well as defined an
initialization function. Before we move on, there are a few useful methods we should add to our object now which will
come in use once we begin implementation of the instructions.

4.1 Push and Pop
We have added both a stack array, as well as a pointer sp to manage the CPU’s stack, however it will be useful to
implement both a push and pop method so we can access it easily.

impl Emu {
// -- Unchanged code omitted --

fn push(&mut self, val: u16) {
self.stack[self.sp as usize] = val;
self.sp += 1;

}

fn pop(&mut self) -> u16 {
self.sp -= 1;
self.stack[self.sp as usize]

}

// -- Unchanged code omitted --
}

These are pretty straightforward. push adds the given 16-bit value to the spot pointed to by the Stack Pointer, then
moves the pointer to the next position. pop performs this operation in reverse, moving the SP back to the previous
value then returning what is there. Note that attempting to pop an empty stack results in an underflow panic3. You
are welcome to add extra handling here if you like, but in the event this were to occur, that would indicate a bug
with either our emulator or the game code, so I feel that a complete panic is acceptable.

4.2 Font Sprites
We haven’t yet delved into how the Chip-8 screen display works, but the gist for now is that it renders sprites
which are stored in memory to the screen, one line at a time. It is up to the game developer to correctly load their
sprites before copying them over. However wouldn’t it be nice if the system automatically had sprites for commonly
used things, such as numbers? I mentioned earlier that our PC will begin at address 0x200, leaving the first 512
intentionally empty. Most modern emulators will use that space to store the sprite data for font characters of all the
hexadecimal digits, that is characters of 0-9 and A-F. We could store this data at any fixed position in RAM, but this
space is already defined as empty anyway. Each character is made up of eight rows of five pixels, with each row using
a byte of data, meaning that each letter altogether takes up five bytes of data. The following diagram illustrates how
a character is stored as bytes.
4 Underflow is when the value of an unsigned variable goes from above zero to below zero. In some languages the
value would then “roll over” to the highest possible size, but in Rust this leads to a runtime error and needs to be
handled differently if desired. The same goes for values exceeding the maximum possible value, known as overflow.

3‘ROM’ stands for “Read-only memory”. It is a type of memory that is hard written at manufacturing time and cannot be modified by
the computer system. For the purposes of this guide “ROM file” will be used interchangeably with “game file”.

4‘ROM’ stands for “Read-only memory”. It is a type of memory that is hard written at manufacturing time and cannot be modified by
the computer system. For the purposes of this guide “ROM file” will be used interchangeably with “game file”.
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Figure 4: Chip-8 Font Sprite

On the right, each row is encoded into binary. Each pixel is assigned a bit, which corresponds to whether that pixel
will be white or black. Every sprite in Chip-8 is eight pixels wide, which means a pixel row requires 8-bits (1 byte).
The above diagram shows the layout of the “1” character sprite. The sprites don’t need all 8 bits of width, so they all
have black right halves. Sprites have been created for all of the hexadecimal digits, and are required to be present
somewhere in RAM for some games to function. Later in this guide we will cover the instruction that handles these
sprites, which will show how these are loaded and how the emulator knows where to find them. For now, we simply
need to define them. We will do so with a constant array of bytes; at the top of lib.rs, add:

const FONTSET_SIZE: usize = 80;

const FONTSET: [u8; FONTSET_SIZE] = [
0xF0, 0x90, 0x90, 0x90, 0xF0, // 0
0x20, 0x60, 0x20, 0x20, 0x70, // 1
0xF0, 0x10, 0xF0, 0x80, 0xF0, // 2
0xF0, 0x10, 0xF0, 0x10, 0xF0, // 3
0x90, 0x90, 0xF0, 0x10, 0x10, // 4
0xF0, 0x80, 0xF0, 0x10, 0xF0, // 5
0xF0, 0x80, 0xF0, 0x90, 0xF0, // 6
0xF0, 0x10, 0x20, 0x40, 0x40, // 7
0xF0, 0x90, 0xF0, 0x90, 0xF0, // 8
0xF0, 0x90, 0xF0, 0x10, 0xF0, // 9
0xF0, 0x90, 0xF0, 0x90, 0x90, // A
0xE0, 0x90, 0xE0, 0x90, 0xE0, // B
0xF0, 0x80, 0x80, 0x80, 0xF0, // C
0xE0, 0x90, 0x90, 0x90, 0xE0, // D
0xF0, 0x80, 0xF0, 0x80, 0xF0, // E
0xF0, 0x80, 0xF0, 0x80, 0x80 // F

];

You can see the bytes outlined in the “1” diagram above, all of the other letters work in a similar way. Now that
these are outlined, we need to load them into RAM. Modify Emu::new() to copy those values in:

pub fn new() -> Self {
let mut new_emu = Self {

pc: START_ADDR,
ram: [0; RAM_SIZE],
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screen: [false; SCREEN_WIDTH * SCREEN_HEIGHT],
v_reg: [0; NUM_REGS],
i_reg: 0,
sp: 0,
stack: [0; STACK_SIZE],
keys: [false; NUM_KEYS],
dt: 0,
st: 0,

};

new_emu.ram[..FONTSET_SIZE].copy_from_slice(&FONTSET);

new_emu
}

This initializes our Emu object in the same way as before, but copies in our character sprite data into RAM before
returning it.

It will also be useful to be able to reset our emulator without having to create a new object. There are fancier ways of
doing this, but we’ll just keep it simple and create a function that resets our member variables back to their original
values when called.

pub fn reset(&mut self) {
self.pc = START_ADDR;
self.ram = [0; RAM_SIZE];
self.screen = [false; SCREEN_WIDTH * SCREEN_HEIGHT];
self.v_reg = [0; NUM_REGS];
self.i_reg = 0;
self.sp = 0;
self.stack = [0; STACK_SIZE];
self.keys = [false; NUM_KEYS];
self.dt = 0;
self.st = 0;
self.ram[..FONTSET_SIZE].copy_from_slice(&FONTSET);

}

4.3 Tick
With the creation of our Emu object completed (for now), we can begin to define how the CPU will process each
instruction and move through the game. To summarize what was described in the previous parts, the basic loop will
be:

1. Fetch the value from our game (loaded into RAM) at the memory address stored in our Program Counter.
2. Decode this instruction.
3. Execute, which will possibly involve modifying our CPU registers or RAM.
4. Move the PC to the next instruction and repeat.

Let’s begin by adding the opcode processing to our tick function, beginning with the fetching step:

// -- Unchanged code omitted --

pub fn tick(&mut self) {
// Fetch
let op = self.fetch();
// Decode
// Execute

}

fn fetch(&mut self) -> u16 {
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// TODO
}

The fetch function will only be called internally as part of our tick loop, so it doesn’t need to be public. The purpose
of this function is to grab the instruction we are about to execute (known as an opcode) for use in the next steps of
this cycle. If you’re unfamiliar with Chip-8’s instruction format, I recommend you refresh up with the overview from
the earlier chapters.

Fortunately, Chip-8 is easier than many systems. For one, there’s only 35 opcodes to deal with as opposed to the
hundreds that many processors support. In addition, many systems store additional parameters for each opcode in
subsequent bytes (such as operands for addition), Chip-8 encodes these into the opcode itself. Due to this, all Chip-8
opcodes are exactly 2 bytes, which is larger than some other systems, but the entire instruction is stored in those two
bytes, while other contemporary systems might consume between 1 and 3 bytes per cycle.

Each opcode is encoded differently, but fortunately since all instructions consume two bytes, the fetch operation is
the same for all of them, and implemented as such:

fn fetch(&mut self) -> u16 {
let higher_byte = self.ram[self.pc as usize] as u16;
let lower_byte = self.ram[(self.pc + 1) as usize] as u16;
let op = (higher_byte << 8) | lower_byte;
self.pc += 2;
op

}

This function fetches the 16-bit opcode stored at our current Program Counter. We store values in RAM as 8-bit
values, so we fetch two and combine them as Big Endian. The PC is then incremented by the two bytes we just read,
and our fetched opcode is returned for further processing.

4.4 Timer Tick
The Chip-8 specification also mentions two special purpose timers, the Delay Timer and the Sound Timer. While the
tick function operates once every CPU cycle, these timers are modified instead once every frame, and thus need to
be handled in a separate function. Their behavior is rather simple, every frame both decrease by one. If the Sound
Timer is set to one, the system will emit a ‘beep’ noise. If the timers ever hit zero, they do not automatically reset;
they will remain at zero until the game manually resets them to some value.

pub fn tick_timers(&mut self) {
if self.dt > 0 {

self.dt -= 1;
}

if self.st > 0 {
if self.st == 1 {

// BEEP
}
self.st -= 1;

}
}

Audio is the one thing that this guide won’t cover, mostly due to increased complexity in getting audio to work in
both our desktop and web browser frontends. For now we’ll simply leave a comment where the beep would occur, but
any curious readers are encouraged to implement it themselves (and then tell me how they did it).
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5 Opcode Execution
In the previous section, we fetched our opcode and were preparing to decode which instruction it corresponds to to
execute that instruction. Currently, our tick function looks like this:

pub fn tick(&mut self) {
// Fetch
let op = self.fetch();
// Decode
// Execute

}

This implies that decode and execute will be their own separate functions. While they could be, for Chip-8 it’s easier
to simply perform the operation as we determine it, rather than involving another function call. Our tick function
thus becomes this:

pub fn tick(&mut self) {
// Fetch
let op = self.fetch();
// Decode & execute
self.execute(op);

}

fn execute(&mut self, op: u16) {
// TODO

}

Our next step is to decode, or determine exactly which operation we’re dealing with. The Chip-8 opcode cheatsheet
has all of the available opcodes, how to interpret their parameters, and some notes on what they mean. You will need
to reference this often. For a complete emulator, each and every one of them must be implemented.

5.1 Pattern Matching
Fortunately, Rust has a very robust and useful pattern matching feature we can use to our advantage. However, we
will need to separate out each hex “digit” before we do so.

fn execute(&mut self, op: u16) {
let digit1 = (op & 0xF000) >> 12;
let digit2 = (op & 0x0F00) >> 8;
let digit3 = (op & 0x00F0) >> 4;
let digit4 = op & 0x000F;

}

Perhaps not the cleanest code, but we need each hex digit separately. From here, we can create a match statement
where we can specify the patterns for all of our opcodes:

fn execute(&mut self, op: u16) {
let digit1 = (op & 0xF000) >> 12;
let digit2 = (op & 0x0F00) >> 8;
let digit3 = (op & 0x00F0) >> 4;
let digit4 = op & 0x000F;

match (digit1, digit2, digit3, digit4) {
(_, _, _, _) => unimplemented!("Unimplemented opcode: {}", op),

}
}

Rust’s match statement demands that all possible options be taken into account which is done with the _ variable,
which captures “everything else”. Inside, we’ll use the unimplemented! macro to cause the program to panic if
it reaches that point. By the time we finish adding all opcodes, the Rust compiler demands that we still have an
“everything else” statement, but we should never hit it.
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While a long match statement would certainly work for other architectures, it is usually more common to implement
instructions in their own functions, and either use a lookup table or programmatically determine which function is
correct. Chip-8 is somewhat unusual because it stores instruction parameters into the opcode itself, meaning we need
a lot of wild cards to match the instructions. Since there are a relatively small number of them, a match statement
works well here.

With the framework setup, let’s dive in!

5.2 Intro to Implementing Opcodes
The following pages individually discuss how all of Chip-8’s instructions work, and include code of how to implement
them. You are welcome to simply follow along and implement instruction by instruction, but before you do that, you
may want to look forward to the next section and begin working on some of the frontend code. Currently we have no
way of actually running our emulator, and it may be useful to some to be able to attempt to load and run a game for
debugging. However, do remember that the emulator will likely crash rather quickly unless all of the instructions are
implemented. Personally, I prefer to work on the instructions first before working on the other moving parts (hence
why this guide is laid out the way it is).

With that disclaimer out of the way, let’s proceed to working on each of the Chip-8 instructions in turn.

5.2.1 0000 - Nop

Our first instruction is the simplest one - do nothing. This may seem like a silly one to have, but sometimes it’s
needed for timing or alignment purposes. In any case, we simply need to move on to the next opcode (which was
already done in fetch), and return.

match (digit1, digit2, digit3, digit4) {
// NOP
(0, 0, 0, 0) => return,
(_, _, _, _) => unimplemented!("Unimplemented opcode: {}", op),

}

5.2.2 00E0 - Clear screen

Opcode 0x00E0 is the instruction to clear the screen, which means we need to reset our screen buffer to be empty
again.

match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --

// CLS
(0, 0, 0xE, 0) => {

self.screen = [false; SCREEN_WIDTH * SCREEN_HEIGHT];
},

// -- Unchanged code omitted --
}

5.2.3 00EE - Return from Subroutine

We haven’t yet spoken about subroutines (aka functions) and how they work. Entering into a subroutine works in the
same way as a plain jump; we move the PC to the specified address and resume execution from there. Unlike a jump,
a subroutine is expected to complete at some point, and we will need to return back to the point where we entered.
This is where our stack comes in. When we enter a subroutine, we simply push our address onto the stack, run the
routine’s code, and when we’re ready to return we pop that value off our stack and execute from that point again.
A stack also allows us to maintain return addresses for nested subroutines while ensuring they are returned in the
correct order.

match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --
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// RET
(0, 0, 0xE, 0xE) => {

let ret_addr = self.pop();
self.pc = ret_addr;

},

// -- Unchanged code omitted --
}

5.2.4 1NNN - Jump

The jump instruction is pretty easy to add, simply move the PC to the given address.

match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --

// JMP NNN
(1, _, _, _) => {

let nnn = op & 0xFFF;
self.pc = nnn;

},

// -- Unchanged code omitted --
}

The main thing to notice here is that this opcode is defined by ‘0x1’ being the most significant digit. The other digits
are used as parameters for this operation, hence the _ placeholder in our match statement, here we want anything
starting with a 1, but ending in any three digits to enter this statement.

5.2.5 2NNN - Call Subroutine

The opposite of our ‘Return from Subroutine’ operation, we are going to add our current PC to the stack, and then
jump to the given address. If you skipped straight here, I recommend reading the Return section for additional
context.

match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --

// CALL NNN
(2, _, _, _) => {

let nnn = op & 0xFFF;
self.push(self.pc);
self.pc = nnn;

},

// -- Unchanged code omitted --
}

5.2.6 3XNN - Skip next if VX == NN

This opcode is first of a few that follow a similar pattern. For those who are unfamiliar with assembly, being able to
skip a line gives similar functionality to an if-else block. We can make a comparison, and if true go to one instruction,
and if false go somewhere else. This is also the first opcode which will use one of our V registers. In this case, the
second digit tells us which register to use, while the last two digits provide the raw value.

match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --

// SKIP VX == NN
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(3, _, _, _) => {
let x = digit2 as usize;
let nn = (op & 0xFF) as u8;
if self.v_reg[x] == nn {

self.pc += 2;
}

},

// -- Unchanged code omitted --
}

The implementation works like this: since we already have the second digit saved to a variable, we will reuse it for
our ‘X’ index, although cast to a usize, as Rust requires all array indexing to be done with a usize variable. If that
value stored in that register equals nn, then we skip the next opcode, which is the same as skipping our PC ahead by
two bytes.

5.2.7 4XNN - Skip next if VX != NN

This opcode is exactly the same as the previous, except we skip if the compared values are not equal.

match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --

// SKIP VX != NN
(4, _, _, _) => {

let x = digit2 as usize;
let nn = (op & 0xFF) as u8;
if self.v_reg[x] != nn {

self.pc += 2;
}

},

// -- Unchanged code omitted --
}

5.2.8 5XY0 - Skip next if VX == VY

A similar operation again, however we now use the third digit to index into another V Register. You will also notice
that the least significant digit is not used in the operation. This opcode requires it to be 0.

match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --

// SKIP VX == VY
(5, _, _, 0) => {

let x = digit2 as usize;
let y = digit3 as usize;
if self.v_reg[x] == self.v_reg[y] {

self.pc += 2;
}

},

// -- Unchanged code omitted --
}

5.2.9 6XNN - VX = NN

Set the V Register specified by the second digit to the value given.
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match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --

// VX = NN
(6, _, _, _) => {

let x = digit2 as usize;
let nn = (op & 0xFF) as u8;
self.v_reg[x] = nn;

},

// -- Unchanged code omitted --
}

5.2.10 7XNN - VX += NN

This operation adds the given value to the VX register. In the event of an overflow, Rust will panic, so we need to use
a different method than the typical addition operator. Note also that while Chip-8 has a carry flag (more on that
later), it is not modified by this operation.

match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --

// VX += NN
(7, _, _, _) => {

let x = digit2 as usize;
let nn = (op & 0xFF) as u8;
self.v_reg[x] = self.v_reg[x].wrapping_add(nn);

},

// -- Unchanged code omitted --
}

5.2.11 8XY0 - VX = VY

Like the VX = NN operation, but the source value is from the VY register.

match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --

// VX = VY
(8, _, _, 0) => {

let x = digit2 as usize;
let y = digit3 as usize;
self.v_reg[x] = self.v_reg[y];

},

// -- Unchanged code omitted --
}

5.2.12 8XY1, 8XY2, 8XY3 - Bitwise operations

The 8XY1, 8XY2, and 8XY3 opcodes are all similar functions, so rather than repeat myself three times over, I’ll
implement the OR operation, and allow the reader to implement the other two.

match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --

// VX |= VY
(8, _, _, 1) => {
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let x = digit2 as usize;
let y = digit3 as usize;
self.v_reg[x] |= self.v_reg[y];

},

// -- Unchanged code omitted --
}

5.2.13 8XY4 - VX += VY

This operation has two aspects to make note of. Firstly, this operation has the potential to overflow, which will
cause a panic in Rust if not handled correctly. Secondly, this operation is the first to utilize the VF flag register. I’ve
touched upon it previously, but while the first 15 V registers are general usage, the final 16th (0xF) register doubles
as the flag register. Flag registers are common in many CPU processors; in the case of Chip-8 it also stores the carry
flag, basically a special variable that notes if the last application operation resulted in an overflow/underflow. Here,
if an overflow were to happen, we need to set the VF to be 1, or 0 if not. With these two aspects in mind, we will
use Rust’s overflowing_add attribute, which will return a tuple of both the wrapped sum, as well as a boolean of
whether an overflow occurred.

match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --

// VX += VY
(8, _, _, 4) => {

let x = digit2 as usize;
let y = digit3 as usize;

let (new_vx, carry) = self.v_reg[x].overflowing_add(self.v_reg[y]);
let new_vf = if carry { 1 } else { 0 };

self.v_reg[x] = new_vx;
self.v_reg[0xF] = new_vf;

},

// -- Unchanged code omitted --
}

5.2.14 8XY5 - VX -= VY

This is the same operation as the previous opcode, but with subtraction rather than addition. The key distinction is
that the VF carry flag works in the opposite fashion. The addition operation would set the flag to 1 if an overflow
occurred, here if an underflow occurs, it is set to 0, and vice versa. The overflowing_sub method will be of use to
us here.

match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --

// VX -= VY
(8, _, _, 5) => {

let x = digit2 as usize;
let y = digit3 as usize;

let (new_vx, borrow) = self.v_reg[x].overflowing_sub(self.v_reg[y]);
let new_vf = if borrow { 0 } else { 1 };

self.v_reg[x] = new_vx;
self.v_reg[0xF] = new_vf;

},
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// -- Unchanged code omitted --
}

5.2.15 8XY6 - VX »= 1

This operation performs a single right shift on the value in VX, with the bit that was dropped off being stored into
the VF register. Unfortunately, there isn’t a built-in Rust u8 operator to catch the dropped bit, so we will have to do
it ourself.

match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --

// VX >>= 1
(8, _, _, 6) => {

let x = digit2 as usize;
let lsb = self.v_reg[x] & 1;
self.v_reg[x] >>= 1;
self.v_reg[0xF] = lsb;

},

// -- Unchanged code omitted --
}

5.2.16 8XY7 - VX = VY - VX

This operation works the same as the previous VX -= VY operation, but with the operands in the opposite direction.

match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --

// VX = VY - VX
(8, _, _, 7) => {

let x = digit2 as usize;
let y = digit3 as usize;

let (new_vx, borrow) = self.v_reg[y].overflowing_sub(self.v_reg[x]);
let new_vf = if borrow { 0 } else { 1 };

self.v_reg[x] = new_vx;
self.v_reg[0xF] = new_vf;

},

// -- Unchanged code omitted --
}

5.2.17 8XYE - VX «= 1

Similar to the right shift operation, but we store the value that is overflowed in the flag register.

match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --

// VX <<= 1
(8, _, _, 0xE) => {

let x = digit2 as usize;
let msb = (self.v_reg[x] >> 7) & 1;
self.v_reg[x] <<= 1;
self.v_reg[0xF] = msb;

},
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// -- Unchanged code omitted --
}

5.2.18 9XY0 - Skip if VX != VY

Done with the 0x8000 operations, it’s time to go back and add an opcode that was notably missing, skipping the next
line if VX != VY. This is the same code as the 5XY0 operation, but with an inequality.

match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --

// SKIP VX != VY
(9, _, _, 0) => {

let x = digit2 as usize;
let y = digit3 as usize;
if self.v_reg[x] != self.v_reg[y] {

self.pc += 2;
}

},

// -- Unchanged code omitted --
}

5.2.19 ANNN - I = NNN

This is the first instruction to utilize the I Register, which will be used in several additional instructions, primarily as
an address pointer to RAM. In this case, we are simply setting it to the 0xNNN value encoded in this opcode.

match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --

// I = NNN
(0xA, _, _, _) => {

let nnn = op & 0xFFF;
self.i_reg = nnn;

},

// -- Unchanged code omitted --
}

5.2.20 BNNN - Jump to V0 + NNN

While previous instructions have used the V Register specified within the opcode, this instruction always uses the first
V0 register. This operation moves the PC to the sum of the value stored in V0 and the raw value 0xNNN supplied in
the opcode.

match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --

// JMP V0 + NNN
(0xB, _, _, _) => {

let nnn = op & 0xFFF;
self.pc = (self.v_reg[0] as u16) + nnn;

},

// -- Unchanged code omitted --
}
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5.2.21 CXNN - VX = rand() & NN

Finally, something to shake up the monotony! This opcode is Chip-8’s random number generation, with a slight twist,
in that the random number is then AND’d with the lower 8-bits of the opcode. While the Rust development team
has released a random generation crate, it is not part of its standard library, so we shall have to add it to our project.

In chip8_core/Cargo.toml, add the following line somewhere under [dependencies]:

rand = "ˆ0.7.3"

Note: If you are planning on following this guide completely to its end, there will be a future change to how we
include this library for web browser support. However, at this stage in the project, it is enough to specify it as is.

Time now to add RNG support and implement this opcode. At the top of lib.rs, we will need to import a function
from the rand crate:

use rand::random;

We will then use the random function when implementing our opcode:

match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --

// VX = rand() & NN
(0xC, _, _, _) => {

let x = digit2 as usize;
let nn = (op & 0xFF) as u8;
let rng: u8 = random();
self.v_reg[x] = rng & nn;

},

// -- Unchanged code omitted --
}

Note that specifying rng as a u8 variable is necessary for the random() function to know which type it is supposed to
generate.

5.2.22 DXYN - Draw Sprite

This is probably the single most complicated opcode, so allow me to take a moment to describe how it works in detail.
Rather than drawing individual pixels or rectangles to the screen at a time, the Chip-8 display works by drawing
sprites, images stored in memory that are copied to the screen at a specified (x, y). For this opcode, the second and
third digits give us which V Registers we are to fetch our (x, y) coordinates from. So far so good. Chip-8’s sprites are
always 8 pixels wide, but can be a variable number of pixels tall, from 1 to 16. This is specified in the final digit of
our opcode. I mentioned earlier that the I Register is used frequently to store an address in memory, and this is the
case here; our sprites are stored row by row beginning at the address stored in I. So if we are told to draw a 3px tall
sprite, the first row’s data is stored at *I, followed by *I + 1, then *I + 2. This explains why all sprites are 8 pixels
wide, each row is assigned a byte, which is 8-bits, one for each pixel, black or white. The last detail to note is that if
any pixel is flipped from white to black or vice versa, the VF is set (and cleared otherwise). With these things in
mind, let’s begin.

match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --

// DRAW
(0xD, _, _, _) => {

// Get the (x, y) coords for our sprite
let x_coord = self.v_reg[digit2 as usize] as u16;
let y_coord = self.v_reg[digit3 as usize] as u16;
// The last digit determines how many rows high our sprite is
let num_rows = digit4;
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// Keep track if any pixels were flipped
let mut flipped = false;
// Iterate over each row of our sprite
for y_line in 0..num_rows {

// Determine which memory address our row's data is stored
let addr = self.i_reg + y_line as u16;
let pixels = self.ram[addr as usize];
// Iterate over each column in our row
for x_line in 0..8 {

// Use a mask to fetch current pixel's bit. Only flip if a 1
if (pixels & (0b1000_0000 >> x_line)) != 0 {

// Sprites should wrap around screen, so apply modulo
let x = (x_coord + x_line) as usize % SCREEN_WIDTH;
let y = (y_coord + y_line) as usize % SCREEN_HEIGHT;

// Get our pixel's index for our 1D screen array
let idx = x + SCREEN_WIDTH * y;
// Check if we're about to flip the pixel and set
flipped |= self.screen[idx];
self.screen[idx] ˆ= true;

}
}

}

// Populate VF register
if flipped {

self.v_reg[0xF] = 1;
} else {

self.v_reg[0xF] = 0;
}

},

// -- Unchanged code omitted --
}

5.2.23 EX9E - Skip if Key Pressed

Time at last to introduce user input. When setting up our emulator object, I mentioned that there are 16 possible keys
numbered 0 to 0xF. This instruction checks if the index stored in VX is pressed, and if so, skips the next instruction.

match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --

// SKIP KEY PRESS
(0xE, _, 9, 0xE) => {

let x = digit2 as usize;
let vx = self.v_reg[x];
let key = self.keys[vx as usize];
if key {

self.pc += 2;
}

},

// -- Unchanged code omitted --
}
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5.2.24 EXA1 - Skip if Key Not Pressed

Same as the previous instruction, however this time the next instruction is skipped if the key in question is not being
pressed.

match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --

// SKIP KEY RELEASE
(0xE, _, 0xA, 1) => {

let x = digit2 as usize;
let vx = self.v_reg[x];
let key = self.keys[vx as usize];
if !key {

self.pc += 2;
}

},

// -- Unchanged code omitted --
}

5.2.25 FX07 - VX = DT

I mentioned the use of the Delay Timer when we were setting up the emulation structure. This timer ticks down
every frame until reaching zero. However, that operation happens automatically, it would be really useful to be able
to actually see what’s in the Delay Timer for our game’s timing purposes. This instruction does just that, and stores
the current value into one of the V Registers for us to use.

match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --

// VX = DT
(0xF, _, 0, 7) => {

let x = digit2 as usize;
self.v_reg[x] = self.dt;

},

// -- Unchanged code omitted --
}

5.2.26 FX0A - Wait for Key Press

While we already had instructions to check if keys are either pressed or released, this instruction does something very
different. Unlike those, which checked the key state and then moved on, this instruction is blocking, meaning the
whole game will pause and wait for as long as it needs to until the player presses a key. That means it needs to loop
endlessly until something in our keys array turns true. Once a key is found, it is stored into VX. If more than one
key is currently being pressed, it takes the lowest indexed one.

match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --

// WAIT KEY
(0xF, _, 0, 0xA) => {

let x = digit2 as usize;
let mut pressed = false;
for i in 0..self.keys.len() {

if self.keys[i] {
self.v_reg[x] = i as u8;
pressed = true;
break;
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}
}

if !pressed {
// Redo opcode
self.pc -= 2;

}
},

// -- Unchanged code omitted --
}

You may be looking at this implementation and asking “why are we resetting the opcode and going through the entire
fetch sequence again, rather than simply doing this in a loop?”. Simply put, while we want this instruction to block
future instructions from running, we do not want to block any new key presses from being registered. By remaining
in a loop, we would prevent our key press code from ever running, causing this loop to never end. Perhaps inefficient,
but much simpler than some sort of asynchronous checking.

5.2.27 FX15 - DT = VX

This operation works the other direction from our previous Delay Timer instruction. We need someway to reset the
Delay Timer to a value, and this instruction allows us to copy over a value from a V Register of our choosing.

match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --

// DT = VX
(0xF, _, 1, 5) => {

let x = digit2 as usize;
self.dt = self.v_reg[x];

},

// -- Unchanged code omitted --
}

5.2.28 FX18 - ST = VX

Almost the exact same instruction as the previous, however this time we are going to store the value from VX into
our Sound Timer.

match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --

// ST = VX
(0xF, _, 1, 8) => {

let x = digit2 as usize;
self.st = self.v_reg[x];

},

// -- Unchanged code omitted --
}

5.2.29 FX1E - I += VX

Instruction ANNN sets I to the encoded 0xNNN value, but sometimes it is useful to be able to simply increment the
value. This instruction takes the value stored in VX and adds it to the I Register. In the case of an overflow, the
register should simply roll over back to 0, which we can accomplish with Rust’s wrapping_add method.

match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --
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// I += VX
(0xF, _, 1, 0xE) => {

let x = digit2 as usize;
let vx = self.v_reg[x] as u16;
self.i_reg = self.i_reg.wrapping_add(vx);

},

// -- Unchanged code omitted --
}

5.2.30 FX29 - Set I to Font Address

This is another tricky instruction where it may not be clear how to progress at first. If you recall, we stored an array
of font data at the very beginning of RAM when initializing the emulator. This instruction wants us to take in the
number to print on screen (from 0 to 0xF), and store the RAM address of that sprite into the I Register. We are
actually free to store those sprites anywhere we wanted, so long as we are consistent and point to them correctly here.
However, we stored them in a very convenient location, at the beginning of RAM. Let me show you what I mean by
printing out some of the sprites and their RAM locations.

Character RAM Address
0 0
1 5
2 10
3 15
. . . . . .
E (14) 70
F (15) 75

You’ll notice that since all of our font sprites take up five bytes each, their RAM address is simply their value times 5.
If we happened to store the fonts in a different RAM address, we could still follow this rule, however we’d have to
apply an offset to where the block begins.

match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --

// I = FONT
(0xF, _, 2, 9) => {

let x = digit2 as usize;
let c = self.v_reg[x] as u16;
self.i_reg = c * 5;

},

// -- Unchanged code omitted --
}

5.2.31 FX33 - I = BCD of VX

Most of the instructions for Chip-8 are rather self-explanitory, and can be implemented quite easily just by hearing a
vague description. However, there are a few that are quite tricky, such as drawing to a screen and this one, storing
the Binary-Coded Decimal of a number stored in VX into the I Register. I encourage you to read up on BCD if you
are unfamiliar with it, but a brief refresher goes like this. In this tutorial, we’ve been using hexadecimal quite a bit,
which works by converting our normal decimal numbers into base-16, which is more easily understood by computers.
For example, the decimal number 100 would become 0x64. This is good for computers, but not very accessible to
humans, and certainly not to the general audience who are going to play your games. The main purpose of BCD is to
convert a hexadecimal number back into a pseudo-decimal number to print out for the user, such as for your points or
high scores. So while Chip-8 might store 0x64 internally, fetching its BCD would give us 0x1, 0x0, 0x0, which we
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could print to the screen as “100”. You’ll notice that we’ve gone from one byte to three in order to store all three
digits of our number, which is why we are going to store the BCD into RAM, beginning at the address currently in
the I Register and moving along. Given that VX stores 8-bit numbers, which range from 0 to 255, we are always
going to end up with three bytes, even if some are zero.

match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --

// BCD
(0xF, _, 3, 3) => {

let x = digit2 as usize;
let vx = self.v_reg[x] as f32;

// Fetch the hundreds digit by dividing by 100 and tossing the decimal
let hundreds = (vx / 100.0).floor() as u8;
// Fetch the tens digit by dividing by 10, tossing the ones digit and the decimal
let tens = ((vx / 10.0) % 10.0).floor() as u8;
// Fetch the ones digit by tossing the hundreds and the tens
let ones = (vx % 10.0) as u8;

self.ram[self.i_reg as usize] = hundreds;
self.ram[(self.i_reg + 1) as usize] = tens;
self.ram[(self.i_reg + 2) as usize] = ones;

},

// -- Unchanged code omitted --
}

For this implementation, I converted our VX value first into a float, so that I could use division and modulo
arithmetic to get each decimal digit. This is not the fastest implementation nor is it probably the shortest. However,
it is one of the easiest to understand. I’m sure there are some highly binary-savvy readers who are disgusted that I did
it this way, but this solution is not for them. This is for readers who have never seen BCD before, where losing some
speed for greater understanding is a better trade-off. However, once you have this implemented, I would encourage
everyone to go out and look up more efficient BCD algorithms to add a bit of easy optimization into your code.

5.2.32 FX55 - Store V0 - VX into I

We’re on the home stretch! These final two instructions populate our V Registers V0 thru the specified VX (inclusive)
with the same range of values from RAM, beginning with the address in the I Register. This first one stores the
values into RAM, while the next one will load them the opposite way.

match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --

// STORE V0 - VX
(0xF, _, 5, 5) => {

let x = digit2 as usize;
let i = self.i_reg as usize;
for idx in 0..=x {

self.ram[i + idx] = self.v_reg[idx];
}

},

// -- Unchanged code omitted --
}
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5.2.33 FX65 - Load I into V0 - VX

match (digit1, digit2, digit3, digit4) {
// -- Unchanged code omitted --

// LOAD V0 - VX
(0xF, _, 6, 5) => {

let x = digit2 as usize;
let i = self.i_reg as usize;
for idx in 0..=x {

self.v_reg[idx] = self.ram[i + idx];
}

},

// -- Unchanged code omitted --
}

5.2.34 Final Thoughts

That’s it! With this, we now have a fully implemented Chip-8 CPU. You may have noticed a lot of possible opcode
values are never covered, particularly in the 0x0000, 0xE000, and 0xF000 ranges. This is okay. These opcodes are left
as undefined by the original design, and thus if any game attempts to use them it will lead to a runtime panic. If you
are still curious following the completion of this emulator, there are a number of Chip-8 extensions which do fill in
some of these gaps to add additional functionality, but they will not be covered by this guide.
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6 Writing our Desktop Frontend
In this section, we will finally connect all the pieces and get our emulator to load and run a game. At this stage, our
emulator core is capable of parsing and processing the game’s opcodes, and being able to update the screen, RAM,
and the registers as needed. Next, we will need to add some public functions to expose some functionality to the
frontend, such as loading in a game, accepting user input, and sharing the screen buffer to be displayed.

6.1 Exposing the Core to the Frontend
We are not done with our chip8_core just yet. We need to add a few public functions to our Emu struct to give
access to some of its items.

In chip8_core/src/lib.rs, add the following method to our Emu struct:

impl Emu {
// -- Unchanged code omitted --

pub fn get_display(&self) -> &[bool] {
&self.screen

}

// -- Unchanged code omitted --
}

This simply passes a pointer to our screen buffer array up to the frontend, where it can be used to render to the
display.

Next, we will need to handle key presses. We already have a keys array, but it never actually gets written to. Our
frontend will handle actually reading keyboard presses, but we’ll need to expose a function that allows it to interface
and set elements in our keys array.

impl Emu {
// -- Unchanged code omitted --

pub fn keypress(&mut self, idx: usize, pressed: bool) {
self.keys[idx] = pressed;

}

// -- Unchanged code omitted --
}

This function is rather straightforward. It takes the index of the key that has been pressed and sets the value. We
could have split this function into a press_key and release_key function, but this is simple enough that I think the
intention still comes across. Keep in mind that idx needs to be under 16 or else the program will panic. You can
add that restriction here, but instead we’ll handle it in the frontend and assume that it’s been done correctly in the
backend, rather than checking it twice.

Lastly, we need some way to load the game code from a file into our RAM so it can be executed. We’ll dive into this
more deeply when we begin reading from a file in our frontend, but for now we need to take in a list of bytes and
copy them into our RAM.

impl Emu {
// -- Unchanged code omitted --

pub fn load(&mut self, data: &[u8]) {
let start = START_ADDR as usize;
let end = (START_ADDR as usize) + data.len();
self.ram[start..end].copy_from_slice(data);

}

33



// -- Unchanged code omitted --
}

This function copies all the values from our input data slice into RAM beginning at 0x200. Remember that the first
512 bytes of RAM aren’t to contain game data, and are empty except for the character sprite data we store there.

6.2 Frontend Setup
Finally, let’s setup the frontend of the emulator so we can test things out and (hopefully) play some games! Making a
fancy GUI interface is beyond the scope of this guide, we will simply start the emulator and choose which game to
play via a command line argument. Let’s set that up now.

In desktop/src/main.rs we will need to read the command line arguments to receive the path to our game ROM
file. We could create several flags for additional configuration, but we’ll keep it simple and say that we’ll require
exactly one argument - the path to the game. Any other number and we’ll exit out with an error.

use std::env;

fn main() {
let args: Vec<_> = env::args().collect();
if args.len() != 2 {

println!("Usage: cargo run path/to/game");
return;

}
}

This grabs all of the passed command line parameters into a vector, and if there isn’t two (the name of the program
is always stored in args[0]), then we print out the correct input and exit. The path passed in by the user is now
stored in args[1]. We’ll have to make sure that’s a valid file once we attempt to open it, but first, we have some
other stuff to setup.

6.3 Creating a Window
For this emulation project, we are going to use the SDL library to create our game window and render to it. SDL
is an excellent drawing library to use with good support for key presses and drawing. There’s a small amount of
boilerplate we’ll need in order to set it up, but once that’s done we can begin our emulation.

First, we’ll need to include it into our project. Open desktop/Cargo.toml and add sdl2 to our dependencies:

[dependencies]
chip8_core = { path = "../chip8_core" }
sdl2 = "ˆ0.34.3

Now back in desktop/src/main.rs, we can begin bringing it all together. We’ll need the public functions we defined
in our core, so let’s tell Rust we’ll need those with use chip8_core::*.

use chip8_core::*;
use std::env;

fn main() {
let args: Vec<_> = env::args().collect();
if args.len() != 2 {

println!("Usage: cargo run path/to/game");
return;

}
}

Inside chip8_core, we created public constants to hold the screen size, which we are now importing. However, a
64x32 game window is really small on today’s monitors, so let’s go ahead and scale it up a bit. After experimenting
with some numbers, a 15x scale works well on my monitor, but you can tweak this if you prefer something else.
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const SCALE: u32 = 15;
const WINDOW_WIDTH: u32 = (SCREEN_WIDTH as u32) * SCALE;
const WINDOW_HEIGHT: u32 = (SCREEN_HEIGHT as u32) * SCALE;

Recall that SCREEN_WIDTH and SCREEN_HEIGHT were public constants we defined in our backend and are now included
into this crate via the use chip8_core::* statement. SDL will require screen sizes to be u32 rather than usize so
we’ll cast them here.

It’s time to create our SDL window! The following code simply creates a new SDL context, then makes the window
itself and the canvas that we’ll draw upon.

fn main() {
// -- Unchanged code omitted --

// Setup SDL
let sdl_context = sdl2::init().unwrap();
let video_subsystem = sdl_context.video().unwrap();
let window = video_subsystem

.window("Chip-8 Emulator", WINDOW_WIDTH, WINDOW_HEIGHT)

.position_centered()

.opengl()

.build()

.unwrap();

let mut canvas = window.into_canvas().present_vsync().build().unwrap();
canvas.clear();
canvas.present();

}

We’ll initialize SDL and tell it to create a new window of our scaled up size. We’ll also have it be created in the
middle of the user’s screen. We’ll then get the canvas object we’ll actually draw to, with VSYNC on. Then go ahead
and clear it and show it to the user.

If you attempt to run it now (give it a dummy file name to test, like cargo run test), you’ll see a window pop up
for a brief moment before closing. This is because the SDL window is created briefly, but then the program ends and
the window closes. We’ll need to create our main game loop so that our program doesn’t end immediately, and while
we’re at it, let’s add some handling to quit the program if we try to exit out of the window (otherwise you’ll have to
force quit the program from your task manager).

SDL uses something called an event pump to poll for events every loop. By checking this, we can cause different
things to happen for given events, such as attempting to close the window or pressing a key. For now, we’ll just have
the program break out of the main game loop if it needs the window to close.

We’ll need to tell Rust that we wish to use SDL’s Event:

use sdl2::event::Event;

And modify our main function to add our basic game loop:

fn main() {
// -- Unchanged code omitted --

// Setup SDL
let sdl_context = sdl2::init().unwrap();
let video_subsystem = sdl_context.video().unwrap();
let window = video_subsystem

.window("Chip-8 Emulator", WINDOW_WIDTH, WINDOW_HEIGHT)

.position_centered()

.opengl()

.build()

.unwrap();
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let mut canvas = window.into_canvas().present_vsync().build().unwrap();
canvas.clear();
canvas.present();

let mut event_pump = sdl_context.event_pump().unwrap();

'gameloop: loop {
for evt in event_pump.poll_iter() {

match evt {
Event::Quit{..} => {

break 'gameloop;
},
_ => ()

}
}

}
}

This addition sets up our main game loop, which checks if any events have been triggered. If the Quit event is
detected (by attempting to close the window), then the program breaks out of the loop, causing it to end. If you try
to run it again via cargo run test, you’ll see a new black window pop-up, with the title of ‘Chip-8 Emulator’. The
window should successfully close without issue.

It lives! Next up, we’ll initialize our emulator’s chip8_core backend, and open and load the game file.

6.4 Loading a File
Our frontend can now create a new emulation window, so it’s time to start getting the backend up and running as
well. Our next step will be to actually read in a game file, and pass its data to the backend to be stored in RAM and
executed upon. Firstly, we need to actually have a backend object to pass things to. Still in frontend/src/main.rs,
let’s create our emulation object. Our Emu object has already been included with all the other public items from
chip8_core, so we’re free to initialize.

fn main() {
// -- Unchanged code omitted --

let mut chip8 = Emu::new();

'gameloop: loop {
// -- Unchanged code omitted --

}
}

Creating the Emu object needs to go somewhere prior to our main game loop, as that is where the emulation drawing
and key press handing will go. Remember that the path to the game is being passed in by the user, so we’ll also
need to make sure this file actually exists before we attempt read it in. We’ll need to first use a few items from the
standard library in main.rs to open a file.

use std::fs::File;
use std::io::Read;

Pretty self-explanatory there. Next, we’ll open the file given to us as a command line parameter, read it into a buffer,
then pass that data into our emulator backend.

fn main() {
// -- Unchanged code omitted --
let mut chip8 = Emu::new();

let mut rom = File::open(&args[1]).expect("Unable to open file");
let mut buffer = Vec::new();
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rom.read_to_end(&mut buffer).unwrap();
chip8.load(&buffer);
// -- Unchanged code omitted --

}

A few things to note here. In the event that Rust is unable to open the file from the path the user gave us (likely
because it doesn’t exist), then the expect condition will fail and the program will exit with that message. Secondly,
we could give the file path to the backend and load the data there, but reading a file is a more frontend-type behavior
and it better fits here. More importantly, our eventual plan is to make this emulator work in a web browser with
little to no changes to our backend. How a browser reads a file is very different to how your file system will do it, so
we will allow the frontends to handle the reading, and pass in the data once we have it.

6.5 Running the Emulator and Drawing to the Screen
The game has been loaded into RAM and our main loop is running. Now we need to tell our backend to begin
processing its instructions, and to actually draw to the screen. If you recall, the emulator runs through a clock cycle
each time its tick function is called, so let’s add that to our loop.

fn main() {
// -- Unchanged code omitted --

'gameloop: loop {
for event in event_pump.poll_iter() {

// -- Unchanged code omitted --
}

chip8.tick();
}

}

Now every time the loop cycles, the emulator will progress through another instruction. This may seem too easy,
but we’ve set it up so tick moves all the pieces of the backend, including modifying our screen buffer. Let’s add a
function that will grab the screen data from the backend and update our SDL window. First, we need to use a few
additional elements from SDL:

use sdl2::pixels::Color;
use sdl2::rect::Rect;
use sdl2::render::Canvas;
use sdl2::video::Window;

Next, the function, which will take in a reference to our Emu object, as well as a mutable reference to our SDL canvas.
Drawing the screen requires a few steps. First, we clear the canvas to erase the previous frame. Then, we iterate
through the screen buffer, drawing a white rectangle anytime the given value is true. Since Chip-8 only supports
black and white; if we clear the screen as black, we only have to worry about drawing the white squares.

fn draw_screen(emu: &Emu, canvas: &mut Canvas<Window>) {
// Clear canvas as black
canvas.set_draw_color(Color::RGB(0, 0, 0));
canvas.clear();

let screen_buf = emu.get_display();
// Now set draw color to white, iterate through each point and see if it should be drawn
canvas.set_draw_color(Color::RGB(255, 255, 255));
for (i, pixel) in screen_buf.iter().enumerate() {

if *pixel {
// Convert our 1D array's index into a 2D (x,y) position
let x = (i % SCREEN_WIDTH) as u32;
let y = (i / SCREEN_WIDTH) as u32;

// Draw a rectangle at (x,y), scaled up by our SCALE value
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let rect = Rect::new((x * SCALE) as i32, (y * SCALE) as i32, SCALE, SCALE);
canvas.fill_rect(rect).unwrap();

}
}
canvas.present();

}

To summarize this function, we get our 1D screen buffer array and iterate across it. If we find a white pixel (a true
value), then we calculate the 2D (x, y) of the screen and draw a rectangle there, scaled up by our SCALE factor.

We’ll call this function in our main loop, just after we tick.

fn main() {
// -- Unchanged code omitted --

'gameloop: loop {
for event in event_pump.poll_iter() {

// -- Unchanged code omitted --
}

chip8.tick();
draw_screen(&chip8, &mut canvas);

}
}

Some of you might be raising your eyebrows at this. The screen should be updated at 60 frames per second, or 60
Hz. Surely the emulation needs to happen faster than that? It does, but hold that thought for now. We’ll start by
making sure it works at all before we fix the timings.

If you have a Chip-8 game downloaded, go ahead and try running your emulator with an actual game via:

$ cargo run path/to/game

If everything has gone well, you should see the window appear and the game begin to render and play! You should
feel accomplished for getting this far with your very own emulator.

As I mentioned previously, the emulation tick speed should probably run faster than the canvas refresh rate. If you
watch your game run, it might feel a bit sluggish. Right now, we execute one instruction, then draw to the screen,
then repeat. As you’re aware, it takes several instructions to be able to do any meaningful changes to the screen. To
get around this, we will allow the emulator to tick several times before redrawing.

Now, this is where things get a bit experimental. The Chip-8 specification says nothing about how quickly the system
should actually run. Even leaving it is now so it runs at 60 Hz is a valid solution (and you’re welcome to do so).
We’ll simply allow our tick function to loop several times before moving on to drawing the screen. Personally, I (and
other emulators I’ve looked at) find that 10 ticks per frame is a nice sweet spot.

const TICKS_PER_FRAME: usize = 10;
// -- Unchanged code omitted --

fn main() {
// -- Unchanged code omitted --

'gameloop: loop {
for event in event_pump.poll_iter() {

// -- Unchanged code omitted --
}

for _ in 0..TICKS_PER_FRAME {
chip8.tick();

}
draw_screen(&chip8, &mut canvas);
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}
}

Some of you might feel this is a bit hackish (I somewhat agree with you). However, this is also how more ‘sophisticated’
systems work, with the exception that those CPUs usually have some way of notifying the screen that it’s ready to
redraw. Since the Chip-8 has no such mechanism nor any defined clock speed, this is a easier way to accomplish this
task.

If you run again, you might notice that it doesn’t get very far before pausing. This is likely due to the fact that we
never update our two timers, so the emulator has no concept of how long time has passed for its games. I mentioned
earlier that the timers run once per frame, rather than at the clock speed, so we can modify the timers at the same
point as when we modify the screen.

fn main() {
// -- Unchanged code omitted --

'gameloop: loop {
for event in event_pump.poll_iter() {

// -- Unchanged code omitted --
}

for _ in 0..TICKS_PER_FRAME {
chip8.tick();

}
chip8.tick_timers();
draw_screen(&chip8, &mut canvas);

}
}

There’s still a few things left to implement (you can’t actually control your game for one) but it’s a great start, and
we’re on the final stretches now!

6.6 Adding User Input
We can finally render our Chip-8 game to the screen, but we can’t get very far into playing it as we have no way
to control it. Fortunately, SDL supports reading in inputs to the keyboard which we can translate and send to our
backend emulation.

As a refresher, the Chip-8 system supports 16 different keys. These are typically organized in a 4x4 grid, with
keys 0-9 organized like a telephone with keys A-F surrounding. While you are welcome to organize the keys in
any configuration you like, some game devs assumed they’re in the grid pattern when choosing their games inputs,
which means it can be awkward to play some games otherwise. For our emulator, we’ll use the left-hand keys of the
QWERTY keyboard as our inputs, as shown below.

Let’s create a function to convert SDL’s key type into the values that we will send to the emulator. We’ll need to
bring SDL keyboard support into main.rs via:

use sdl2::keyboard::Keycode;

Now, we’ll create a new function that will take in a Keycode and output an optional u8 value. There are only 16
valid keys, so we’ll wrap a valid output valid in Some, and return None if the user presses a non-Chip-8 key. This
function is then just pattern matching all of the valid keys as outlined in the image above.

fn key2btn(key: Keycode) -> Option<usize> {
match key {

Keycode::Num1 => Some(0x1),
Keycode::Num2 => Some(0x2),
Keycode::Num3 => Some(0x3),
Keycode::Num4 => Some(0xC),
Keycode::Q => Some(0x4),
Keycode::W => Some(0x5),
Keycode::E => Some(0x6),

39



Keycode::R => Some(0xD),
Keycode::A => Some(0x7),
Keycode::S => Some(0x8),
Keycode::D => Some(0x9),
Keycode::F => Some(0xE),
Keycode::Z => Some(0xA),
Keycode::X => Some(0x0),
Keycode::C => Some(0xB),
Keycode::V => Some(0xF),
_ => None,

}
}

Figure 5: Keyboard to Chip-8 key layout

Next, we’ll add two additional events to our main event loop, one for KeyDown and the other for KeyUp. Each event
will check if the pressed key gives a Some value from our key2btn function, and if so pass it to the emulator via the
public keypress function we defined earlier. The only difference between the two will be if it sets or clears.

fn main() {
// -- Unchanged code omitted --
'gameloop: loop {

for evt in event_pump.poll_iter() {
match evt {

Event::Quit{..} => {
break 'gameloop;

},
Event::KeyDown{keycode: Some(key), ..} => {

if let Some(k) = key2btn(key) {
chip8.keypress(k, true);

}
},
Event::KeyUp{keycode: Some(key), ..} => {

if let Some(k) = key2btn(key) {
chip8.keypress(k, false);

}
},
_ => ()

}
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for _ in 0..TICKS_PER_FRAME {
chip8.tick();

}
chip8.tick_timers();
draw_screen(&chip8, &mut canvas);

}
// -- Unchanged code omitted --

}

The if let statement is only satisfied if the value on the right matches that on the left, namely that key2btn(key)
returns a Some value. The unwrapped value is then stored in k.

Let’s also add a common emulator ability - quitting the program by pressing Escape. We’ll add that alongside our
Quit event.

fn main() {
// -- Unchanged code omitted --
'gameloop: loop {

for evt in event_pump.poll_iter() {
match evt {

Event::Quit{..} | Event::KeyDown{keycode: Some(Keycode::Escape), ..}=> {
break 'gameloop;

},
Event::KeyDown{keycode: Some(key), ..} => {

if let Some(k) = key2btn(key) {
chip8.keypress(k, true);

}
},
Event::KeyUp{keycode: Some(key), ..} => {

if let Some(k) = key2btn(key) {
chip8.keypress(k, false);

}
},
_ => ()

}
}

for _ in 0..TICKS_PER_FRAME {
chip8.tick();

}
chip8.tick_timers();
draw_screen(&chip8, &mut canvas);

}
// -- Unchanged code omitted --

}

Unlike the other key events, where we would check the found key variable, we want to use the Escape key to quit. If
you don’t want this ability in your emulator, or would like some other key press functionality, you’re welcome to do so.

That’s it! The desktop frontend of our Chip-8 emulator is now complete. We can specify a game via a command line
parameter, load and execute it, display the output to the screen, and handle user input.

I hope you were able to get an understanding of how emulation works. Chip-8 is a rather basic system, but the
techniques discussed here form the basis for how all emulation works.

However, this guide isn’t done! In the next section I will discuss how to build our emulator with WebAssembly and
getting it to run in a web browser.
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7 Introduction to WebAssembly
This section will discuss how to take our finished emulator and configure it to run in a web browser via a relatively
new technology called WebAssembly. I encourage you to read more about WebAssembly. It is a format for compiling
programs into a binary executable, similar in scope to an .exe, but are meant to be run within a web browser. It is
supported by all of the major web browsers, and is a cross-company standard being developed between them. This
means that instead of having to write web code in JavaScript or other web-centric languages, you can write it in any
language that supports compilation of .wasm files and still be able to run in a browser. At the time of writing, C,
C++, and Rust are the major languages which support it, fortunately for us.

7.1 Setting Up
While we could cross-compile to the WebAssembly Rust targets ourselves, a useful set of tools called wasm-pack has
been developed to allow us to easily compile to WebAssembly without manually adding the appropriate targets and
dependencies. You will need to install it via:

$ cargo install wasm-pack

If you are on Windows the install might fail at the openssl-sys crate https://github.com/rustwasm/wasm-
pack/issues/1108 and you will have to download it manually from https://rustwasm.github.io/wasm-pack/

I also mentioned that we will need to make a slight adjustment to our chip8_core module to allow it to compile
correctly to the wasm target. Rust uses a system called wasm-bindgen to create hooks that will work with WebAssembly.
All of the std code we use is already fine, however we also use the rand crate in our backend, and it is not currently set
to work correctly. Fortunately, it does support the functionality, we just need to enable it. In chip8_core/Cargo.toml
we need to change

[dependencies]
rand = "ˆ0.7.3"

to

[dependencies]
rand = { version = "ˆ0.7.3", features = ["wasm-bindgen"] }

All this does is specifies that we will require rand to include the wasm-bindgen feature upon compilation, which will
allow it to work correctly in our WebAssembly binary.

Note: In the time between writing this tutorial’s code and finishing the write-up, the rand crate updated to version
0.8. Among other changes is that the wasm-bindgen feature has been removed. If you are wanting to use the most
up-to-date rand crate, it appears that WebAssembly support has been moved out into its own separate crate. Since
we are only using the most basic random function, I didn’t feel the need to upgrade to 0.8, but if you wish to, it
appears that additional integration would be required.

That’s the last time you will need to edit your chip8_core module, everything else will be done in our new frontend.
Let’s set that up now. First, lets crate another Rust module via:

$ cargo init wasm --lib

This command may look familiar, it will create another new Rust library called wasm. Just like desktop, we will need
to edit wasm/Cargo.toml to point to where chip8_core is located.

[dependencies]
chip8_core = { path = "../chip8_core" }

Now, a big difference between our desktop and our new wasm is that desktop was an executable project, it had
a main.rs that we would compile and run. wasm will not have that, it is meant to be compiled into a .wasm file
that we will load into a webpage. It is the webpage that will serve as the frontend, so let’s add some basic HTML
boilerplate, just to get us started. Create a new folder called web to hold the webpage specific code, and then create
web/index.html and add basic HTML boilerplate.

<!DOCTYPE html>
<html>

<head>
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<title>Chip-8 Emulator</title>
<meta charset="utf-8">

</head>
<body>

<h1>My Chip-8 Emulator</h1>
</body>

</html>

We’ll add more to it later, but for now this will suffice. Our web program will not run if you simply open the file in a
web browser, you will need to start a web server first. If you have Python 3 installed, which all modern Macs and
many Linux distributions do, you can simply start a web server via:

$ python3 -m http.server

Navigate to localhost in your web browser. If you ran this in the web directory, you should see our index.html
page displayed. I’ve tried to find a simple, built-in way to start a local web server on Windows, and I haven’t really
found one. I personally use Python 3, but you are welcome to use any other similar service, such as npm or even some
Visual Studio Code extensions. It doesn’t matter which, just so they can host a local web page.

7.2 Defining our WebAssembly API
We have our chip8_core created already, but we are now missing all of the functionality we added to desktop.
Loading a file, handling key presses, telling it when to tick, etc. On the other hand, we have a web page that (will)
run JavaScript, which needs to handle inputs from the user and display items. Our wasm crate is what goes in the
middle. It will take inputs from JavaScript and convert them into the data types required by our chip8_core.

Most importantly, we also need to somehow create a chip8_core::Emu object and keep it in scope for the entirety of
our web page.

To begin, let’s include a few external crates that we will need to allow Rust to interface with JavaScript. Open up
wasm/Cargo.toml and add the following dependencies:

[dependencies]
chip8_core = { path = "../chip8_core" }
js-sys = "ˆ0.3.46"
wasm-bindgen = "ˆ0.2.69"

[dependencies.web-sys]
version = "ˆ0.3.46"
features = []

You’ll notice that we’re handling web-sys differently than other dependencies. That crate is structured in such a
way that instead of getting everything it contains simply by including it in our Cargo.toml, we also need to specify
additional “features” which come with the crate, but aren’t available by default. Keep this file open, as we’ll be
adding to the web_sys features soon enough.

Since this crate is going to be interfacing with another language, we need to specify how they are to communicate.
Without getting too deep into the details, Rust can use the C language’s ABI to easily communicate with other
languages that support it, and it will greatly simplify our wasm binary to do so. So, we will need to tell cargo to use
it. Add this in wasm/Cargo.toml as well:

[lib]
crate-type = ["cdylib"]

Excellent. Now to wasm/src/lib.rs. Let’s create a struct that will house our Emu object as well as all the frontend
functions we need to interface with JavaScript and operate. We’ll also need to include all of our public items from
chip8_core as well.

use chip8_core::*;
use wasm_bindgen::prelude::*;

#[wasm_bindgen]
pub struct EmuWasm {
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chip8: Emu,
}

Note the #[wasm_bindgen] tag, which tells the compiler that this struct needs to be configured for WebAssembly.
Any function or struct that is going to be called from within JavaScript will need to have it. Let’s also define the
constructor.

use chip8_core::*;
use wasm_bindgen::prelude::*;

#[wasm_bindgen]
pub struct EmuWasm {

chip8: Emu,
}

#[wasm_bindgen]
impl EmuWasm {

#[wasm_bindgen(constructor)]
pub fn new() -> EmuWasm {

EmuWasm {
chip8: Emu::new(),

}
}

}

Pretty straight-forward. The biggest thing to note is that the new method requires the special constructor inclusion
so the compiler knows what we’re trying to do.

Now we have a struct containing our chip8 emulation core object. Here, we will implement the same methods that
we needed by our desktop frontend, such as passing key presses/releases to the core, loading in a file, and ticking.
Let’s begin with ticking the CPU and the timers, as it’s the easiest.

#[wasm_bindgen]
impl EmuWasm {

// -- Unchanged code omitted --

#[wasm_bindgen]
pub fn tick(&mut self) {

self.chip8.tick();
}

#[wasm_bindgen]
pub fn tick_timers(&mut self) {

self.chip8.tick_timers();
}

}

That’s it, these are just thin wrappers to call the corresponding functions in the chip8_core. These functions don’t
take any input, so there’s nothing fancy for them to do except, well, tick.

Remember the reset function we created in the chip8_core, but then never used? Well, we’ll get to use it now.
This will be a wrapper just like the previous two functions.

#[wasm_bindgen]
pub fn reset(&mut self) {

self.chip8.reset();
}

Key pressing is the first of these functions that will deviate from what was done in desktop. This works in a similar
fashion to what we did for desktop, but rather than taking in an SDL key press, we’ll need to accept one from
JavaScript. I promised we’d add some web-sys features, so lets do so now. Back in wasm/Cargo.toml add the
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KeyboardEvent feature

[dependencies.web-sys]
version = "ˆ0.3.46"
features = [

"KeyboardEvent"
]

use web_sys::KeyboardEvent;

// -- Unchanged code omitted --

impl EmuWasm {
// -- Unchanged code omitted --

#[wasm_bindgen]
pub fn keypress(&mut self, evt: KeyboardEvent, pressed: bool) {

let key = evt.key();
if let Some(k) = key2btn(&key) {

self.chip8.keypress(k, pressed);
}

}
}

fn key2btn(key: &str) -> Option<usize> {
match key {

"1" => Some(0x1),
"2" => Some(0x2),
"3" => Some(0x3),
"4" => Some(0xC),
"q" => Some(0x4),
"w" => Some(0x5),
"e" => Some(0x6),
"r" => Some(0xD),
"a" => Some(0x7),
"s" => Some(0x8),
"d" => Some(0x9),
"f" => Some(0xE),
"z" => Some(0xA),
"x" => Some(0x0),
"c" => Some(0xB),
"v" => Some(0xF),
_ => None,

}
}

This is very similar to our implementation for our desktop, except we are going to take in a JavaScript KeyboardEvent,
which will result in a string for us to parse. Note that the key strings are case sensitive, so keep everything lowercase
unless you want your players to hold down shift a lot.

A similar story awaits us when we load a game, it will follow a similar style, except we will need to receive and handle
a JavaScript object.

use js_sys::Uint8Array;
// -- Unchanged code omitted --

impl EmuWasm {
// -- Unchanged code omitted --
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#[wasm_bindgen]
pub fn load_game(&mut self, data: Uint8Array) {

self.chip8.load(&data.to_vec());
}

}

The only thing remaining is our function to actually render to a screen. I’m going to create an empty function here,
but we’ll hold off on implementing it for now, instead we’ll turn our attention back to our web page, and begin
working from the other direction.

impl EmuWasm {
// -- Unchanged code omitted --

#[wasm_bindgen]
pub fn draw_screen(&mut self, scale: usize) {

// TODO
}

}

We’ll come back here once we get our JavaScript setup and we know exactly how we’re going to draw.

7.3 Creating our Frontend Functionality
Time to get our hands dirty in JavaScript. First, let’s add some additional elements to our very bland web page.
When we created the emulator to run on a PC, we used SDL to create a window to draw upon. For a web page, we
will use an element HTML5 gives us called a canvas. We’ll also go ahead and point our web page to our (currently
non-existent) JS script.

<!DOCTYPE html>
<html>

<head>
<title>Chip-8 Emulator</title>
<meta charset="utf-8">

</head>
<body>

<h1>My Chip-8 Emulator</h1>
<label for="fileinput">Upload a Chip-8 game: </label>
<input type="file" id="fileinput" autocomplete="off"/>
<br/>
<canvas id="canvas">If you see this message, then your browser doesn't support HTML5</canvas>

</body>
<script type="module" src="index.js"></script>

</html>

We added three things here, first a button which when clicked will allow the users to select a Chip-8 game to run.
Secondly, the canvas element, which includes a brief message for any unfortunate users with an out of date browser.
Finally we told our web page to also load the index.js script we are about to create. Note that at the time of
writing, in order to load a .wasm file via JavaScript, you need to specify that it is of module type.

Now, let’s create index.js and we’ll define some items we’ll need. First, we need to tell JavaScript to load in our
WebAssembly functions. Now, we aren’t going to load it in directly here. When we compile with wasm-pack, it will
generate not only our .wasm file, but also an auto-generated JavaScript “glue” that will wrap each function we defined
around a JavaScript function we then can use here.

import init, * as wasm from "./wasm.js"

This imports all of our functions, as well as a special init function that will need to be called first before we can use
anything from wasm.

Let’s define some constants and do some basic setup now.
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import init, * as wasm from "./wasm.js"

const WIDTH = 64
const HEIGHT = 32
const SCALE = 15
const TICKS_PER_FRAME = 10
let anim_frame = 0

const canvas = document.getElementById("canvas")
canvas.width = WIDTH * SCALE
canvas.height = HEIGHT * SCALE

const ctx = canvas.getContext("2d")
ctx.fillStyle = "black"
ctx.fillRect(0, 0, WIDTH * SCALE, HEIGHT * SCALE)

const input = document.getElementById("fileinput")

All of this will look familiar from our desktop build. We fetch the HTML canvas and adjust its size to the dimension
of our Chip-8 screen, plus scaled up a bit (feel free to adjust this for your preferences).

Let’s create a main run function that will load our EmuWasm object and handle the main emulation.

async function run() {
await init()
let chip8 = new wasm.EmuWasm()

document.addEventListener("keydown", function(evt) {
chip8.keypress(evt, true)

})

document.addEventListener("keyup", function(evt) {
chip8.keypress(evt, false)

})

input.addEventListener("change", function(evt) {
// Handle file loading

}, false)
}

run().catch(console.error)

Here, we called the mandatory init function which tells our browser to initialize our WebAssembly binary before we
use it. We then create our emulator backend by making a new EmuWasm object.

We will now handle loading in a file when our button is pressed.

input.addEventListener("change", function(evt) {
// Stop previous game from rendering, if one exists
if (anim_frame != 0) {

window.cancelAnimationFrame(anim_frame)
}

let file = evt.target.files[0]
if (!file) {

alert("Failed to read file")
return

}

// Load in game as Uint8Array, send to .wasm, start main loop
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let fr = new FileReader()
fr.onload = function(e) {

let buffer = fr.result
const rom = new Uint8Array(buffer)
chip8.reset()
chip8.load_game(rom)
mainloop(chip8)

}
fr.readAsArrayBuffer(file)

}, false)

function mainloop(chip8) {
}

This function adds an event listener to our input button which is triggered whenever it is clicked. Our desktop
frontend used SDL to manage not only drawing to a window, but only to ensure that we were running at 60 FPS.
The analogous feature for canvases is the “Animation Frames”. Anytime we want to render something to the canvas,
we request the window to animate a frame, and it will wait until the correct time has elapsed to ensure 60 FPS
performance. We’ll see how this works in a moment, but for now, we need to tell our program that if we’re loading a
new game, we need to stop the previous animation. We’ll also reset our emulator before we load in the ROM, to
ensure everything is just as it started, without having to reload the webpage.

Following that, we look at the file that the user has pointed us to. We don’t need to check if it’s actually a Chip-8
program, but we do need to make sure that it is a file of some sort. We then read it in and pass it to our backend via
our EmuWasm object. Once the game is loaded, we can jump into our main emulation loop!

function mainloop(chip8) {
// Only draw every few ticks
for (let i = 0; i < TICKS_PER_FRAME; i++) {

chip8.tick()
}
chip8.tick_timers()

// Clear the canvas before drawing
ctx.fillStyle = "black"
ctx.fillRect(0, 0, WIDTH * SCALE, HEIGHT * SCALE)
// Set the draw color back to white before we render our frame
ctx.fillStyle = "white"
chip8.draw_screen(SCALE)

anim_frame = window.requestAnimationFrame(() => {
mainloop(chip8)

})
}

This should look very similar to what we did for our desktop frontend. We tick several times before clearing the canvas
and telling our EmuWasm object to draw the current frame to our canvas. Here is where we tell our window that we
would like to render a frame, and we also save its ID for if we need to cancel it above. The requestAnimationFrame
will wait to ensure 60 FPS performance, and then restart our mainloop when it is time, beginning the process all
over again.

7.4 Compiling our WebAssembly binary
Before we go any further, let’s now try and build our Rust code and ensure that it can be loaded by our web page
without issue. wasm-pack will handle the compilation of our .wasm binary, but we also need to specify that we don’t
wish to use any web packing systems like npm. To build, change directories into the wasm folder and run:

$ wasm-pack build --target web

Once it is completed, the targets will be built into a new pkg directory. There are several items in here, but the only
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ones we need are wasm_bg.wasm and wasm.js. wasm_bg.wasm is the combination of our wasm and chip8_core Rust
crates compiled into one, and wasm.js is the JavaScript “glue” that we included earlier. It is mainly wrappers around
the API we defined in wasm as well as some initialization code. It is actually quite readable, so it’s worth taking a
look at what it is doing.

Running the page in a local web server should allow you to pick and load a game without any warnings coming up in
the browser’s console. However, we haven’t written the screen rendering function yet, so let’s finish that so we can see
our game actually run.

7.5 Drawing to the canvas
Here is the final step, rendering to the screen. We created an empty draw_screen function in our EmuWasm object,
and we call it at the right time, but it currently doesn’t do anything. Now, there are two ways we could handle this.
We could either pass the frame buffer into JavaScript and render it, or we could obtain our canvas in our EmuWasm
binary and render to it in Rust. Either method would work fine, but personally I found that handling the rendering
in Rust is easier.

We’ve used the web_sys crate to handle JavaScript KeyboardEvents in Rust, but it has the functionality to manage
many more JavaScript elements. Again, the ones we wish to use will need to be defined as features in wasm/Cargo.toml.

[dependencies.web-sys]
version = "ˆ0.3.46"
features = [

"CanvasRenderingContext2d",
"Document",
"Element",
"HtmlCanvasElement",
"ImageData",
"KeyboardEvent",
"Window"

]

Here is an overview of our next steps. In order to render to an HTML5 canvas, you need to obtain the canvas object
and its context which is the object which gets the draw functions called upon it. Since our WebAssembly binary has
been loaded by our webpage, it has access to all of its elements just as a JS script would. We will change our new
constructor to grab the current window, canvas, and context much like you would in JavaScript.

use wasm_bindgen::JsCast;
use web_sys::{CanvasRenderingContext2d, HtmlCanvasElement, KeyboardEvent};

#[wasm_bindgen]
pub struct EmuWasm {

chip8: Emu,
ctx: CanvasRenderingContext2d,

}

#[wasm_bindgen]
impl EmuWasm {

#[wasm_bindgen(constructor)]
pub fn new() -> Result<EmuWasm, JsValue> {

let chip8 = Emu::new();

let document = web_sys::window().unwrap().document().unwrap();
let canvas = document.get_element_by_id("canvas").unwrap();
let canvas: HtmlCanvasElement = canvas

.dyn_into::<HtmlCanvasElement>()

.map_err(|_| ())

.unwrap();

let ctx = canvas.get_context("2d")
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.unwrap().unwrap()

.dyn_into::<CanvasRenderingContext2d>()

.unwrap();

Ok(EmuWasm{chip8, ctx})
}

// -- Unchanged code omitted --
}

This should look pretty familiar to those who have done JavaScript programming before. We grab our current
window’s canvas and get its 2D context, which is saved as a member variable of our EmuWasm struct. Now that we
have an actual context to render to, we can update our draw_screen function to draw to it.

#[wasm_bindgen]
pub fn draw_screen(&mut self, scale: usize) {

let disp = self.chip8.get_display();
for i in 0..(SCREEN_WIDTH * SCREEN_HEIGHT) {

if disp[i] {
let x = i % SCREEN_WIDTH;
let y = i / SCREEN_WIDTH;
self.ctx.fill_rect(

(x * scale) as f64,
(y * scale) as f64,
scale as f64,
scale as f64

);
}

}
}

We get the display buffer from our chip8_core and iterate through every pixel. If set, we draw it scaled up to the
value passed in by our frontend. Don’t forget that we already cleared the canvas to black and set the draw color to
white before calling draw_screen, so it doesn’t need to be done here.

That does it! The implementation is done. All that remains is to build it and try it for ourself.

Rebuild by moving into the wasm directory and running:

$ wasm-pack build --target web
$ mv pkg/wasm_bg.wasm ../web
$ mv pkg/wasm.js ../web

Now start your web server and pick a game. If everything has gone well, you should be able to play Chip-8 games
just as well in the browser as on the desktop!

50



8 Opcodes Table
Understanding the Opcode column:

• Any hexadecimal digits (0-9, A-F) that appear in an opcode are interpreted literally, and are used to determine
the operation in question.

• The X or Y wild card uses the value stored in VX/VY.
• N refers to a literal hexadecimal value. NN or NNN refer to two or three digit hex numbers respectively.

Example: The instruction 0xD123 would match with the DXYN opcode, where VX is V1, VY is V2, and N is 3 (draw
a 8x3 sprite at (V1, V2))

OpcodeDescription Notes
0000 Nop Do nothing, progress to next opcode
00E0 Clear screen
00EE Return from subroutine
1NNN Jump to address 0xNNN
2NNN Call 0xNNN Enter subroutine at 0xNNN, adding current PC onto stack so

we can return here
3XNN Skip if VX == 0xNN
4XNN Skip if VX != 0xNN
5XY0 Skip if VX == VY
6XNN VX = 0xNN
7XNN VX += 0xNN Doesn’t affect carry flag
8XY0 VX = VY
8XY1 VX |= VY
8XY2 VX &= VY
8XY3 VX ˆ= VY
8XY4 VX += VY Sets VF if carry
8XY5 VX -= VY Clears VF if borrow
8XY6 VX »= 1 Store dropped bit in VF
8XY7 VX = VY - VX Clears VF if borrow
8XYE VX «= 1 Store dropped bit in VF
9XY0 Skip if VX != VY
ANNN I = 0xNNN
BNNN Jump to V0 + 0xNNN
CXNN VX = rand() & 0xNN
DXYN Draw sprite at (VX, VY) Sprite is 0xN pixels tall, on/off based on value in I, VF set if

any pixels flipped
EX9E Skip if key index in VX is pressed
EXA1 Skip if key index in VX isn’t pressed
FX07 VX = Delay Timer
FX0A Waits for key press, stores index in VX Blocking operation
FX15 Delay Timer = VX
FX18 Sound Timer = VX
FX1E I += VX
FX29 Set I to address of font character in VX
FX33 Stores BCD encoding of VX into I
FX55 Stores V0 thru VX into RAM address

starting at I
Inclusive range

FX65 Fills V0 thru VX with RAM values starting
at address in I

Inclusive
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9 Changelog
9.1 Version 1.0

• Initial release
• Includes source code for Chip-8 emulator as well as PDF document discussing its development

9.2 Version 1.01
• Fix typo: Stack is a LIFO system, not a FIFO
• Added missing bug fixes from source code into the book
• Added ePub generation

9.3 Version 1.1
• Updated much of the prose for better flow (special thanks to KDR for editing).
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